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Objective: Chemical warfare agents are potential threats to military personnel and
civilians. The potential for associated traumatic injuries is significant. Damage con-
trol surgery could expose medical personnel to agents contaminating the wounds. The
objectives of this study were to demonstrate efficacy of surgical decontamination and
assess exposure risk to attending personnel. Methods: Weanling pigs were randomly as-
signed to 2 of 4 debridement tools (scalpel, Bovie

©R
knife, Fugo Blade

©R
, and Versajet

TM

Hydrosurgery System). Penetrating traumatic wounds were created over the shoulder
and thigh and then exposed to liquid sulfur mustard (HD) for 60 minutes. Excisional de-
bridement of the injuries was performed while vapors over each site were collected. Gas
chromatography was used to measure HD in samples of collected vapors. Unbound HD
was quantified in presurgical wound swabs, excised tissues, and peripheral tissue biop-
sies following solvent extraction. Results: Excisional debridement produced agent-free
wound beds (surgical decontamination). A significant amount of HD vapor was detected
above the surgical fields with each tool. Apart from the Versajet

TM
producing signifi-

cantly lower levels of HD detected over thigh wounds compared with those treated using
the scalpel, there were no differences in the amount of agent detected among the tools.
All measured levels significantly exceeded established safety limits. Vesicating levels of
unbound HD were extracted from excised tissue. There was no measured lateral spread-
ing of HD beyond the surgical margins. Conclusions: There is significant occupational
exposure risk to HD during surgical procedures designed to stabilize agent-contaminated
wounds. If appropriate protective measures are taken, surgical decontamination is both
effective and safe.
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Chemical warfare agents (CWAs) are potential threats to both military personnel and
civilians. The potential of associated traumatic injuries requiring surgical treatment is signif-
icant, especially in a battlefield scenario. An existing traumatic wound may be contaminated
with CWAs following the release of vapor or liquid droplets from chemical storage cylinders
or their dispersal via aerial sprays, chemical bombs, or mortar shells. Exploding chemical
munitions may, in addition, inflict traumatic wounds that become contaminated with agent,
concurrently inflicting a combined injury. Liquid contamination of skin can also occur on
contact with contaminated surfaces. The standard of care in today’s casualty management
system provides damage control surgery within the battlefield arena to stabilize traumatic
injuries before transportation to upper echelon medical facilities. Such surgery and patient
movement could potentially expose medical personnel to CWAs that are contaminating
the wound. To date, there are no officially sanctioned modalities to decontaminate wounds
besides 0.5% hypochlorite solution irrigation and lavage, which has relative contraindica-
tions to its use in trauma patients. There are also no standardized or optimized methods of
management for casualties with combined chemical and traumatic wounds that prevent or
minimize surgical team exposure while treatment is rendered.

Following the terrorist attacks on September 11, 2001, and as a result of battlefield
experiences during operations Desert Shield and Desert Storm in 1992, the modern theater
trauma system was matured by May 2004.1 Early far-forward surgical intervention, in rela-
tively close proximity to combat operations,2 is required for saving lives on the battlefield.
Those who need to be treated include military personnel, coalition forces, civilian contrac-
tors, local nationals (including civilians and security forces), and enemy combatants.2−8

During Desert Storm and the early phases of Operation Iraqi Freedom, delays of greater
than 4 hours in transport to traditional military surgical units increased the risk of death
from exsanguination, indicating a need for more proximate trauma surgical capability.2 The
tiered military system now in place includes the following trauma center levels: Echelon I
(Emergency Medical Services personnel, corpsmen, or medics); Echelon IIA (battalion aid
stations and outpatient clinics); Echelon IIB (forward surgical teams); Echelon III (theater
hospitals or regional trauma centers); Echelon IV (large nontheater hospitals); and Eche-
lon V (major US-based military hospitals).1 The combat support hospitals (CSH; Echelon
III) and forward surgery teams, including the Army forward surgery teams, Marine for-
ward resuscitative surgery suites, and the Air Force expeditionary medical support units,
provide far-forward tactical surgical intervention.1−13 These facilities typically do not pro-
vide definitive surgical care but rather damage control surgery to impact mortality and
morbidity and maximize the potential for limb salvage by early intervention.7 Their pri-
mary goals are to control hemorrhage and contamination and to avoid the lethal triad of
hypothermia, acidosis, and coagulopathy.6,12 The most common operative procedures con-
ducted in these units are fasciotomies, laparotomies, craniotomies, wound debridement,
soft tissue stabilization, completion of amputations, restoration of blood flow via repair
or temporary vascular shunting, rapid external fixation or splinting of extremity injuries,
orthopedic and ophthalmologic procedures, major vascular procedures, face- and neck-
related procedures, and thoracic procedures.4,11,12 The forward surgery teams are typically
used during the assault phase of operations7 and used only if flight times are longer than
90 to 120 minutes from a CSH.12 After initial resuscitation and stabilization, patients are
transported to a higher level of care as soon as possible (eg, Landstuhl Regional Med-
ical Center, Landstuhl, Germany).9 Military patients are eventually transported back to
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the United States to a military facility such as the Brooke Army Medical Center (Fort
Sam Houston, Tex); Walter Reed Army Medical Center (Washington, DC); and the Na-
tional Naval Medical Center (Bethesda, Md).9 Wounded military personnel can make it to
an intensive care unit in the United States within 2 to 4 days of injury from the farthest
reaches of Iraq or Afghanistan with the efforts of the US Air Force critical care air transport
teams.12,13

The primary purpose of this study was to test the concept of “surgical decontamina-
tion” for a selected CWA with delayed onset of effects. An agent that delivers its effect over
time and can persist within a wound, such as a mustard, could conceivably be surgically
removed to effect cure or at least mitigate injury, while protecting personnel within the
casualty care system. The tested hypothesis was that a wound contaminated with sulfur
mustard (2,2′-dichlorodiethyl sulfide; HD) could be thoroughly decontaminated through
excisional debridement despite delay in treatment. A key feature of this test was to ascertain
the degree of lateral contamination peripheral to the wounded area along subcutaneous fat
or fascial planes. The hypothesis was tested using an experimental procedure that approxi-
mated the initial phase of combat wound management. The second purpose of this study was
to assess the hazard posed to attending medical personnel by measuring the amount of HD
vapor generated during the excisional debridement of soft tissue wounds after 60 minutes
of HD liquid exposure, using standard and innovative strategies employed in the surgical
treatment of traumatic wounds. The tools used for the excisional debridement of wounds
in this study included a no. 15 scalpel blade (The Kendall Company, Mansfield, Mass); a
Bovie©R electrosurgical knife (Aaron 1250, Aaron Medical, Saint Petersburg, Fla); the Fugo
Blade©R M100 anterior capsulotomy unit (MediSURG Research and Management Corpo-
ration, Norristown, Pa); and the Versajet

TM
hydrosurgery system (Smith & Nephew Inc,

Largo, Fla).

MATERIALS AND METHODS

Animal model

Twelve female Yorkshire crossbred pigs (weanlings), Sus scrofa, 11 to 14 kg (mean =
13 kg), were used (Country View Farms, Shanksville, Pennsylvania). They were quarantined
on arrival for 7 days and screened for evidence of disease before use. They were maintained
under an animal care and use program accredited by the Association for Assessment and
Accreditation of Laboratory Animal Care International. The Institutional Animal Care and
Use Committee at the US Army Medical Research Institute of Chemical Defense, Aberdeen
Proving Ground, Maryland, approved the experimental protocol. Animals were supplied tap
water ad libitum and fed approximately 600 g of Harlan Teklad Miniswine Diet (W) no.
8753 (Harlan Teklad, Madison, Wis) twice a day. Animals were housed individually in
4 × 6-ft pens with coated expanded metal floors. The cages allowed visual, auditory, and
olfactory contact with conspecifics. The room was maintained at 21◦C ± 2◦C with 50% ±
10% relative humidity using at least 10 complete air changes per hour of 100% conditioned
fresh air. Animal rooms were maintained on a 12-hour light/dark full-spectrum lighting
cycle with no twilight. Feed was withheld for 12 hours before anesthesia. It should be
noted that pigs, in general, are the best laboratory models for dermatological research for
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humans. The histological characteristics of pig and human skin are comparable and display
similarities in epidermal thickness and composition, epidermal enzyme patterns, epidermal
tissue turnover time, lipid content, character of keratinous proteins, antigenicity, pelage
density and pattern of hair growth, dermal structure, deposition of subdermal fat, and general
morphology.14−25

Surgical instruments used in excisional debridements

Surgical steel in the form of a no. 15 scalpel blade was combined with direct pressure and
ligature for hemostasis during debridement.

The Bovie©R electrosurgical knife is a multipurpose electrocautery device used as
a soft tissue cutting tool and for cauterizing bleeders. It features both monopolar and
bipolar functions and was utilized in this study in the coagulation mode with the power
setting at 30 W. It was equipped with a standard spatulated blade. This technology
and the surgical scalpel are the most prevalent surgical technologies used in military
medicine.

The Fugo Blade©R M100 anterior capsulotomy unit, approved by the Food and Drug Ad-
ministration (FDA) for anterior capsulotomy procedures conducted during cataract surgery,
transciliary filtration, and peripheral iridotomy, is a radiofrequency electrosurgical incising
instrument26−31 that uses little power and produces no heat. The instrument focuses a low-
power energy field into a 50-µm-wide column of plasma energy. This energy field ablates
bonds of biological molecules and creates very little smoke debris. This technology has
demonstrated low-power microbe decontamination of live tissue surgical sites. The instru-
ment induces no concussion and provides noncauterizing hemostasis called “autostasis.”32

Histologic studies at the University of South Carolina and Louisiana State University have
demonstrated that the Fugo Blade©R cuts in a resistance-free fashion and leaves extraordinar-
ily clean incision walls that are similar to an ablation path of an excimer laser.27,30,33 Biome-
chanics of incision rim strength were characterized at the University of South Carolina,34

demonstrating that the Fugo Blade©R produces an incision in fragile tissue, that is, almost
twice as strong as that produced by diathermy.34 Generally speaking, stronger incision
margins translate into healthier wounds that should heal faster with fewer complications.
These product attributes led to the Fugo Blade’s©R inclusion in this study. As it is rated for
microscopic surgical procedures only, with a maximum cut depth rating of 700 µm, the
Fugo Blade©R M100 unit was set to its maximum power output with the manufacturer’s
concurrence to accomplish the larger cut depths required by this study. A macroscopic
surgical Fugo Blade©R system is being developed because this technology has promise as a
battery-operated, ultra-lightweight, operator-worn medical cutting tool for use in far-forward
resuscitative surgery and personnel rescue.

The Versajet
TM

hydrosurgery system is an FDA-approved instrument that generates
a high-velocity waterjet, which provides efficient debridement and cleansing of traumatic
wounds (including burns), chronic wounds, and other soft tissue.35−44 It is typically used
in applications that would require the use of a pulse lavage device with sharp debridement.
The design and location of the evacuation tube in the hand piece create a vacuum that pro-
vides efficient and safe removal of debris, tissue, fluids, and contaminants. With sufficient
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pressure, this tool can also cut through skin, muscle, and cartilage. This instrument was
used within its designed parameters.

Anesthesia

Before the procedure, each animal was anesthetized by intramuscular injections of xylazine
HCl (Xyla-Ject©R , Phoenix Pharmaceutical Inc, Saint Joseph, Mo; 0.5 mL @ 20 mg/mL)
and a combination of tiletamine HCl and zolazepam HCl (Telazol©R , Fort Dodge Animal
Health, Fort Dodge, Iowa; reconstituted to 100 mg/mL and 0.5 mL administered), and hair
removed from the dorsal and ventral surface with an electric clipper. Orotracheal intuba-
tion was performed using a 4.5 French endotracheal tube under direct visualization. The
animals were placed in a chemical fume hood onto a stable platform in the left lateral
decubitus position. A therapeutic heating pad (Gaymar Industries Inc, Orchard Park, New
York), with the circulating water temperature set at 41◦C, was placed under the animal
during the exposure period to minimize hypothermia. The animals were then administered
1.0% to 2.5% isoflurane (AErrane

TM
, Baxter Pharmaceutical Products Inc, Deerfield, Ill) in

oxygen at a flow rate of 0.6 to 1.0 L/min using an MDS Matrix Spartan VHC anesthesia
machine (Matrix, Orchard Park, New York) equipped with a Matrix VIP 3000 isoflurane
calibrated vaporizer (Matrix, Orchard Park, New York). Body temperature, heart rate, res-
piratory rate, and oxygen saturation were monitored throughout each procedure by using
a Surgivet TPR monitor (Surgivet, Waukesha, Wis). After the experimental procedures
were completed, the animals were euthanized with an overdose of pentobarbital sodium eu-
thanasia solution (Fatal-Plus Solution©R ; 78 mg/kg IV, Baxter Pharmaceutical Products Inc,
Deerfield, Ill).

Sulfur mustard

The HD employed in this study was lot HD-U-2325-CTF-N-1, 97.2 mol% (US Army
Research, Development and Engineering Command, Aberdeen Proving Ground, Md). Stock
solutions of HD in absolute alcohol at 9.5 mg/mL were diluted with hexane to 1.9 ng/µL
for the calibration standards used in gas chromatography (GC) analyses.

Wound generation and sulfur mustard exposure

The right side of each animal was draped with plastic-backed absorbent paper. A plastic
wound template was used to mark areas over the right shoulder and thigh for even spacing
and positioning of the penetrating traumatic wounds and for marking the location where
peripheral biopsies were to be collected along surgical margins (Fig 1a). Each wound (1 on
the shoulder and 1 on the thigh of each animal) consisted of 5 full-thickness punch biopsies
evenly spaced within a 4-cm diameter circle using 10-mm diameter surgical punches (Acu-
Punch Skin Biopsy Punch, Acuderm Inc, Fort Lauderdale, Fla) that penetrated fascia down
to underlying muscle. A dry 4′′ × 4′′ gauze dressing was applied with direct pressure for
5 minutes to achieve hemostasis. Following the biopsy procedure, tissues from 4 of the 5
biopsies were placed together as negative controls into 50 mL of 99.9% n-hexane for HD
extraction.
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Figure 1a. Preparation (preexposure template marking).

Figure 1b. Scalpel excision with gas capture funnel over field.
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Figure 1c. Bovie
©R

excision with gas capture funnel over field.

Figure 1d. Fugo Blade
©R

excision with gas capture funnel over field.
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Figure 1e. Versajet
TM

excision with gas capture funnel over field.

Using an Eppendorf repeating pipettor (Eppendorf North America, Westbury, New
York), 200 µL of undiluted HD was placed into each of the 5 biopsy cavities of each
animal’s wounds. The total amount of HD applied to each wound was 1.24 g (1.24 g/mL ×
0.2 mL/cavity × 5 cavities/wound = 1.24 g/wound). The HD remained in the wounds for a
total dwell time of 60 minutes to allow sufficient time to saturate the wound and mimic the
average duration of time needed to evacuate a casualty to the nearest forward surgery team
or CSH. Immediately following the 60-minute interval, the residual mustard was removed
using 6 absorbent cotton-tipped swabs per wound; the swab tips were then removed and
placed together into a container with 50 mL of 99.9% n-hexane for HD extraction. No
decontaminant was used on the wounds.

Excision procedures

At the beginning of each surgical procedure, a rectangular (4.5 cm × 4.5 cm) area of
skin centered over the wound was incised down to the subcutaneous tissue, using a no. 15
blade scalpel. The skin within this demarcated area was then excised using 1 of 4 surgical
instruments: a no. 15 scalpel blade (Fig 1b), a Bovie©R electrosurgical knife (Fig 1c), the Fugo
Blade©R M100 anterior capsulotomy unit (Fig. 1d), or the Versajet

TM
hydrosurgery system

(Fig. 1e). Animals were randomly assigned to 2 of the 4 surgical tools (1 per wound).
The Bovie©R pad and hand piece were decontaminated and disposed of (in accordance with
regulations governing disposal of HD-contaminated waste) after each excision. The Fugo
Blade©R was set on high-power mode with the intensity set on 10 of 10 and utilized a sharp-
angled tip. Before each use, the hand piece was wrapped in a disposable plastic sheath to
protect the instrument from HD contamination. The Versajet

TM
was set on high (power setting
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of 10 of 10). The hand piece with a 15◦, 14-mm head was chosen because of the tangential
nature of the excision. Five hundred milliliters of lactated Ringer’s solution was used as the
cutting/irrigating solution for each procedure. Each hand piece was decontaminated and
disposed of after each excision.

Each excision was performed over a 2-minute period. A dry 4′′ × 4′′ gauze was placed
over the excised wound bed to minimize bleeding. The excised specimen was placed on a
precut plastic-backed absorbent paper and cut into 9 pieces of equivalent size; the pieces
were placed together directly into 50 mL of 99.9% n-hexane for HD extraction. Punch
biopsies were then excised 2 cm distant from each of the 4 surgical margins down to and
including the underlying fascia and a portion of underlying muscle, using an 8-mm surgical
punch. The 4 biopsies were placed together into 50 mL of 99.9% n-hexane for HD extraction.
Using a clean set of instruments, the same procedure was performed excising 4 biopsies
immediately adjacent to the surgical margins, which were also placed together into 50 mL
of 99.9% n-hexane for HD extraction. Following all biopsy procedures, the animals were
euthanized as described above and the skin surrounding both wounds was widely excised
using a no. 15 scalpel blade and then decontaminated and disposed.

Minicams
TM

measurements

Vapors over each wound were collected during the entire 2-minute-excision period and the
collected fumes were monitored for the presence of HD. The vaporized gases were collected
with a 147-mm-diameter glass Pyrex funnel equipped with a plastic shield, used to direct
fumes up into the funnel, and capped at the tip with a layer of Parafilm©R M laboratory
film (American National Can, Menasha, Wis). The funnel was manually held against the
surrounding skin over and as close as possible to the excision site during the excision period.
Immediately following this 2-minute collection period, a 10-mL-air sample was obtained
from the apex of the funnel by puncturing the Parafilm using a 10-mL-glass air tight syringe,
which was fitted with a 10.5-cm-long pipette tip, such that fumes from the upper portion of
the funnel (beyond the stem) were sampled.

Analyses were conducted using a Minicams
TM

(OI Analytical, CMS Field Products
Group, Birmingham, Ala; a combination preconcentrator tube and gas chromatograph with
a flame photometric detector). The utilization of a Minicams

TM
to detect HD vapor over the

skin of pigs has previously been described.45 Immediately before beginning these experi-
ments, the Minicams

TM
was calibrated using standards of 1.9 ng/mL HD in hexane, which

were prepared by dilution of stock agent that was provided at a concentration of 9.5 mg/mL
HD in ethanol. The instrument was calibrated by injecting various volumes of the standard
(1.5, 2.0, 3.0, and 4.0 µL). The calibration was checked daily using injections of 3 µL of
the standard.

The Minicams
TM

is designed to collect HD vapor on a Tenax
TM

TA solid sorbent (Sci-
entific Instrument Services, Ringoes, NJ), thermally desorb the bound agent, gas chro-
matographically separate mixtures, and detect HD using a flame photometric detector. The
3.67-minute (220-second) cycle of the Minicams

TM
consisted of a 1-minute-sampling period

(0–60 s) during which a sample is collected on a preconcentrator tube containing Tenax
TM

followed by a 2.67-minute (60- to 220-second) purge when desorption and gas chromato-
graphic analysis occurs. Each 10-mL-air sample that was collected from the Pyrex funnel
was immediately injected over a 10-second interval during the 1-minute-sampling cycle
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into the Minicams
TM

through a heated vacuum line. The sample was drawn onto the precon-
centrator tube within the Minicams

TM
at 0.7 L/min monitored by a mass flow meter (model

FM-360, Tylan Corporation, Torrance, Calif). A 15-meter, 0.32-mm inner diameter, 5-µm
DB-1 column with a helium flow rate of 40 mL/min produced HD retention times of 138
seconds with a temperature program of initial temperature 50◦C and a temperature ramp
rate of 200◦C/min to a final temperature of 200◦C held for 115 seconds. The amount of
agent detected in the sample was recorded both in nanograms and an 8-hour-time weighted
average (TWA, where 3 ng/L HD = 1 TWA).

Hexane extractions for HD

Unreacted (free) HD was extracted from the preexposure biopsies (series 1), presurgical
absorbent swabs (series 2), excised wound tissue (series 3), and peripheral biopsies (adja-
cent and distant; series 4 and 5, respectively) by placing them in 50-mL aliquots of 99.9%
pure Optima grade n-hexane (Fisher Scientific, Pittsburgh, Pa) for 24 hours at room tem-
perature. After 24 hours, the extracted solutions were vortexed and samples transferred into
autosampling vials in 1-mL aliquots in duplicate and stored at −80◦C until further analysis.

Analytical separations were performed on an Agilent 6890 Plus GC-FID (Gas
Chromatography—Flame Ionization Detector; Agilent Technologies, Wilmington, Del).
An Agilent 7683 autoinjector was used for all injections. The entire GC system was con-
trolled by Agilent Chemstation A.08.03 software (Agilent Technologies, Wilmington, Del)
operating on a desktop computer. A 30-meter, 0.32-mm, 0.25-µ, EC-1 capillary GC column
(Alltech Associates, Deerfield, Ill) was used for all sample analyses. A split/splitless inlet
was used in split mode at a 50:1 split ratio. The instrument was calibrated before measure-
ments on each of the 5 series of samples. Calibration standards were prepared by 10:1, 5:1,
and 2:1 volumetric dilutions of a primary 9.4 mg/mL HD in hexane gravimetric preparation.
A fourth calibration standard was the primary 9.4 mg/mL preparation. Calibration curves
were determined by the Agilent Chemstation A.08.03 software by averaging the peak ar-
eas for 3 injections of each of the 4 standards. Agilent Chemstation software was used to
calculate concentrations of experimental samples on the basis of linear regression of the 4
calibration standards. Calibration curves, linear regression, and statistical calculations were
made using GraphPad Prism plotting software, version 3.02 (GraphPad, San Diego, Calif).

Statistical analyses

For the Minicams
TM

data, the amount of HD (ng) and TWA (8 h, stated as multiples of 3
ng/L) were analyzed by first testing for normality using a Shapiro-Wilk test. Having failed
this test, the data were transformed using logarithms. The transformed data were found
to be normally distributed. Comparisons of anatomical location (shoulder and thigh) and
surgical tools (scalpel, Fugo Blade©R , Bovie©R , and Versajet

TM
) were made using a mixed

effects model analysis with tools as the fixed factor and locations as the random factor.
Because there were some significant location differences, a 1-factor analysis of variance
was performed for each location to compare tools, followed by a Tukey test to compare
pairs of tools.

For the HD extraction data from the swabs and tissue samples, the amount of HD in the
samples (as determined by the GC-FID) was analyzed. A comparison of tools and locations
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was made using a mixed effects model analysis with tools as the fixed factor and locations
as the random factor. Accurate quantification below 0.1 mg/mL was not attempted, and
therefore HD detected below this level was considered at one half that value (0.05 mg/mL)
in the statistical analysis. Values were converted to milligrams for use in the analysis.

SPSS©R version 13.0 (SPSS Inc, Chicago, Ill) and StatXact (Cytel Inc, Cambridge,
Massachusetts) were used to perform these analyses. Statistical significance was defined as
p ≤ .05.

RESULTS

Minicams
TM

measurements

Plumes of smoke or vapor could be clearly seen emanating from the sites during excisions
with both the Bovie©R electrosurgical knife and the Fugo Blade©R . These fumes were suc-
cessfully captured by the collection funnel. Although no visible plumes were noted with the
scalpel blade or the Versajet

TM
, the air above the operating field was sampled in the same

way as it was during Bovie©R knife and Fugo Blade©R use.
The data were log-normally distributed, and therefore, the analysis was conducted

on the log transformed data. A significant interaction of wound location (shoulder, thigh)
and tool (no. 15 scalpel blade, Bovie©R knife, Fugo Blade©R , and Versajet

TM
) was observed

(Fig 2). This interaction appeared to be due to the scalpel group. When the scalpel group
was removed from the analysis, the interaction was not significant and no other significant
differences were observed between tools and locations.

A separate analysis for each location was performed to compare the surgical tools due
to the interaction and some significant differences observed between locations. There were
no significant differences observed among the tools for the shoulder wounds. A significant
difference between the scalpel and Versajet

TM
was observed for the thigh, where the amount

of HD detected in the collected fumes was significantly lower for the Versajet
TM

than for
the scalpel blade. All measured levels significantly exceeded established safety limits.

Hexane extractions for HD

Hexane extractions were performed on preexposure biopsies, presurgical absorbent swabs,
excised wound tissue, and peripheral biopsies (adjacent and distant). The amount of unre-
acted (free) HD in each sample was determined by GC-FID (Table 1).

No HD was detected in the presurgical biopsies or peripheral biopsies collected distally
to the surgical margins for any tools or at either location. Liquid sulfur mustard was detected
in a single peripheral biopsy set taken from the thigh of 1 pig, adjacent to the surgical margin
following wound excision with the Fugo Blade©R .

Liquid sulfur mustard was consistently measured from the extraction solutions of the
presurgical swabs; however, there were no significant differences between locations and
tools. Of all samples evaluated, these swabs contained the highest amounts of HD (60% of
the applied dose, on average).

Liquid sulfur mustard was extracted from the excised wounded tissue (1% of the applied
dose, on average). There were no significant differences observed between locations or tools.
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Figure 2. Log (TWA) by location and tool. A significant interaction of
wound location (shoulder, thigh) and tool (no. 15 scalpel blade, Bovie

©R

knife, Fugo Blade
©R

, and Versajet
TM

) was observed. This interaction appeared
to be due to the scalpel group. When the scalpel group was removed from
the analysis, the interaction was not significant, and no other significant
differences were observed between tools and locations. A separate analysis
for each location was performed to compare tools. There were no significant
differences observed among the tools for the shoulder wounds. A significant
difference between the scalpel and Versajet

TM
was observed for the thigh,

where the amount of HD detected in the collected fumes was significantly
lower for the Versajet

TM
than for the scalpel blade. TWA = 8-hour-time-

weighted average where 3 ng/L of liquid sulfur mustard = 1 TWA. The
dashed red line represents the Department of Army’s worker population limit
8-hour TWA of 0.0004 mg/m3. BOVIE = Bovie

©R
Electrosurgical Knife,

FUGO = Fugo Blade
©R

M100 Anterior Capsulotomy Unit, SCALPEL =
no. 15 scalpel blade, VERSA = Versajet

TM
Hydrosurgery System.

DISCUSSION

This study has demonstrated that simple excisional debridement, regardless of the type of
instrument used, can be very effective in HD wound decontamination. This study scope was
limited to full-thickness skin wounds and constitutes a step forward in understanding how
to manage agent-contaminated traumatic wounds. A logical follow-on would be systematic
investigation of penetrating wounds in other locations involving relevant mechanisms. In
the area of mitigating agent release from the wound during debridement, the Versajet

TM

was most promising, with significantly lower levels of HD detected over the thigh wounds
compared with the scalpel-blade-treated wounds. It is unclear why there was a difference
with this tool depending upon the location where it was used.
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Table 1. Unreacted (free) liquid sulfur mustard (mg) by location and tool

Biopsies Biopsies
Presurgical proximal distal

Presurgical wound Excised to surgical to surgical
Location Tool biopsies swabs tissue margin margin

Shoulder BOVIE Mean 0.0 737.5 5.3 0.0 0.0
SD 0.0 173.9 4.9 0.0 0.0
Median 0.0 712.5 2.5 0.0 0.0
N 3 3 3 3 3

FUGO Mean 0.0 492.5 20.2 0.0 0.0
SD 0.0 121.5 30.6 0.0 0.0
Median 0.0 430.0 5.2 0.0 0.0
N 3 3 3 3 3

SCALPEL Mean 0.0 1027.5 13.3 0.0 0.0
SD 0.0 385.4 12.2 0.0 0.0
Median 0.0 1207.5 11.0 0.0 0.0
N 3 3 3 3 3

VERSA Mean 0.0 924.2 7.5 0.0 0.0
SD 0.0 133.3 1.5 0.0 0.0
Median 0.0 907.5 7.5 0.0 0.0
N 3 3 3 3 3

Thigh BOVIE Mean 0.0 573.3 1.7 0.0 0.0
SD 0.0 239.5 1.4 0.0 0.0
Median 0.0 520.0 2.5 0.0 0.0
N 3 3 3 3 3

FUGO Mean 0.0 752.5 4.0 3.2 0.0
SD 0.0 173.3 2.6 5.5 0.0
Median 0.0 657.5 2.5 0.0 0.0
N 3 3 3 3 3

SCALPEL Mean 0.0 885.0 17.3 0.0 0.0
SD 0.0 152.8 18.8 0.0 0.0
Median 0.0 875.0 8.0 0.0 0.0
N 3 3 3 3 3

VERSA Mean 0.0 605.0 9.8 0.0 0.0
SD 0.0 187.6 12.0 0.0 0.0
Median 0.0 690.0 6.2 0.0 0.0
N 3 3 3 3 3

Note. BOVIE, Bovie® electrosurgical knife; FUGO, Fugo Blade® M100 Anterior Capsulotomy Unit; SCALPEL, no. 15

scalpel blade; VERSA, Versajet
TM

Hydrosurgery System.

An important initial wound management issue raised in this study was the role of
agent dilution within the wound versus block excision of the contaminated wound site.
The 3 cutting tools, scalpel, Bovie©R knife, and Fugo Blade©R , all demonstrated successful
block excision technique. Liquid sulfur mustard was detected in a single peripheral biopsy
set taken from the thigh adjacent to the surgical margin following wound excision with
the Fugo Blade©R , but this was likely due to surface contamination of agent rather than
to lateral spread of HD below the skin surface. Block excision technique produces less
hazardous waste and may be used to support histopathological, forensic, and attribution
efforts. The Versajet

TM
performed well as a debridement tool and demonstrated that it

could also irrigate and safely remove lavage fluid from the contaminated wound site. It also
generated the greatest amount of hazardous waste, the majority being lavage fluid mixed with
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contaminated tissue homogenate. Because this tool can confine its lavage action over a small
area, it may actually promote more efficient lavage, thereby conserving limited supplies.
Depending on the pressure setting used and how the hand piece is moved, the instrument
can be used either as a cutting tool for making incisions and cutting away tissue or to remove
tissue and debris in a tangential plane. Future study needs to investigate these capabilities.
Its utility may be limited to mature medical facilities with robust infrastructure due to its
logistical footprint, which includes wall power, large fluid stockpile, and hazardous waste
recovery and disposal.

This study also added some insight into agent activity around the wound site. There
was no measurable lateral spreading of the agent beyond the surgical margins. According
to the conventional wisdom, HD should have been rapidly fixed to tissue components,46

quickly absorbed by the lipophilic subcutaneous fat, absorbed systemically, and/or spread
along fascial planes. This did not completely occur in this animal model as witnessed by
the significant amount of agent that could be swabbed out of these wounds 60 minutes after
exposure, immediately before excision.

The existence of a dermal reservoir of HD in humans was first suggested in World War I
by Smith et al,47 who demonstrated that HD injuries could be prevented by washing contam-
inated skin with an appropriate solvent up to 45 minutes postexposure. Furthermore, Smith
et al demonstrated that the skin reservoir of HD could be transferred to a second individ-
ual, even after the exposed surface had been decontaminated. However, studies conducted
during World War II reported the opposite effect in that HD was rapidly “fixed” by skin
constituents such as proteins (Renshaw48). Contemporary in vitro studies have confirmed
the original work of Smith et al that a substantial reservoir of HD is formed in human skin
that can account for up to 35% of the applied dose after 24 hours.49 Work is under way
to further examine the toxicology of this reservoir in both pig and human skin exposed
to radiolabeled HD ex vivo. Studies are being conducted to determine the exact location
of this reservoir of unreacted agent, its persistence and kinetics, the diffusional resistance
of the main skin layers (stratum corneum, epidermis, dermis, hypodermis) to this agent,
the spreading characteristics of HD on the skin surface, and physical and chemical tech-
niques in removing the depot. The existence of the agent reservoir has implications for the
safety of medical emergency personnel treating HD casualties with or without concurrent
trauma. In addition to safety-related implications, the existence of such a depot may exac-
erbate cutaneous and possibly systemic injury if the exposed site is occluded by clothing
or semiocclusive/occlusive dressings, thereby allowing the agent to further penetrate into
the skin rather than off-gas into the atmosphere. Verification of a depot phenomenon would
lend further justification to far-forward topical or surgical decontamination as a legitimate
means to contain this hazard.

As stated earlier, both the Bovie
©R knife and the Fugo Blade©R produced observable

plumes during use. The use of electrocautery, common in surgical practice, has the poten-
tial to increase the risk of exposure to HD vapors by heating up the tissue and volatizing
any unreacted (unbound) agent. This study is the first to observe the use of low-power
plasma to contain and manage agent wound contamination with Fugo Blade©R use. This tool
produced a visible plume of vapor during the excision procedures. Unlike diathermy, which
produces pungent thermal oxidative fumes or residue (“smoke”), the Fugo Blade©R produces
a plume composed of vaporized water laced with aromatic molecular fragments and is sim-
ilar to the laser plume generated by excimer laser ablation of the corneal surface.32,50 As
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the physical basis of plasma sterilization techniques, microbes cannot exist in the plasma
cloud generated by the Fugo Blade©R (Swarthmore College Plasma Lab, Swarthmore, Pa,
unpublished data, August 2000). This observed microbe decontamination effect was the
basis for preliminary investigation of the plasma cloud’s effect on smaller chemical agent
molecules such as HD. Earlier work by Herrmann et al of Los Alamos National lab showed
that small area chemical agent decontamination was achievable by using nonthermal, atmo-
spheric pressure, low-temperature plasma.51,52 Although initially developed for nonmedical
applications, recent advancements have produced decontaminating plasma streams at oper-
ating temperatures consistent with possible intraoperative use (Dr Gary S. Selwyn, personal
communication, Los Alamos National Laboratory, Los Alamos, NM). This basic concept
of a decontaminating plasma field was applied to the problem of containing or neutralizing
agent liberated into the air over the contaminated wound during operation, using the excis-
ing plasma field as a mitigation tool for volatized HD agent. In this study, no significant
reduction of HD was detected over the operating field. Although explanation of this obser-
vation is conjectural, one possible explanation is that the M100 plasma cloud was too small
for both efficient cutting and localized decontamination. The device used in this study was
a microsurgical device used beyond its design parameters; the study operating team noted
that the M100 microsurgical device was less efficient in cutting in this application than the
other modalities used in this study. A new Fugo Blade

©R designed for use in general surgical
applications, such as excisional debridement, was not available at the time of this study and
warrants additional research. This new system retains the desired attributes of the original
Fugo Blade©R M100 system. As both the Bovie©R knife and the Fugo Blade©R were also used
to control bleeding during surgery, the use of hemostats, pressure, epinephrine-soaked pads,
and other adjuncts may be better alternatives to attain hemostasis in this setting.

There is an obvious need for an effective nontoxic decontaminant that is safe to use in
the eyes, open wounds, and body cavities. Although aggressive flushing may prove benefi-
cial, a decontaminant that both extracts and neutralizes a wide variety of CWAs (both nerve
and vesicating agents) would be ideal. Currently available topical skin decontamination sys-
tems such as Reactive Skin Decontamination Lotion (RSDL,53 E-Z-EM Inc, Lake Success,
NY), the US military’s M291 Skin Decontamination Kit (U.S. Army Tank—Automotive
and Armaments Command, Rock Island, Ill) with Ambergard XE-555 resin46,54 and fuller’s
earth are all contraindicated for use as wound decontaminants. In the case of RSDL, this
is due in part to the potential systemic toxicity of an active ingredient (2,3-butanedione
monoxime).55 An additional drawback to RSDL use within wounds is the evidence that
it impairs wound strength and decreases collagen content in the early phases of wound
healing.56 Topical decontaminants based on fine powders such as fuller’s earth and M291
may cause localized toxicity. They are difficult to remove from wounds, and residual par-
ticles may cause chronic irritation, resulting in fibrosis and a granulomatous reaction in
surrounding tissue.57,58 In addition, some topical decontaminants employ indicator systems
to show where decontaminant has been applied, which in turn may obscure the surgeon’s
visibility if used inside a wound. The ideal wound decontaminant would also be hemostatic;
no product thus far has shown this property. Plans for development of a hemostatic agent
that can concurrently extract and decontaminate CWAs (vesicants or nerve agents) are under
way.

Battlefield wounds are commonly contaminated with dirt, shrapnel, clothing, blast
debris, bone dust, wood, or concrete fragments that are driven into the wound and require
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judicious lavage and timely debridement of devitalized tissue.5,13 Wounds contaminated
with CWA should also be well irrigated before excisions or debridement procedures are
conducted. The use of freshly prepared dilute hypochlorite (0.5%) as a skin decontaminant
for use in deep, noncavity wounds has been suggested but is contraindicated for corneal,
brain, and spinal cord injuries.46 Irrigation of the abdominal cavity with hypochlorite solu-
tion may induce adhesions, and the danger of its use in the thoracic cavity is unknown.46

Saline or other surgical solutions may be used for irrigation; however, the run-off effluent
should be considered potentially contaminated46 and could spread the CWA throughout
open cavities. Such fluids should not be removed with surgical sponges, as contaminated
sponges will not decontaminate the agent and may spread any contamination present. In-
stead, these fluids should be removed by suction. Flushing noncavity wounds with copious
quantities of saline before surgical intervention may prove beneficial if unintended spread
of the CWA can be controlled. The use of a pressure wound irrigation device with splatter
guard is recommended to provide optimal pressure of saline and prevent backsplash. The
Versajet

TM
may be the ideal tool to use because it can be used to irrigate and safely remove

lavage fluid from the wound site even before surgical excision.
Finally, the hazard posed to personnel during exposure to an HD-contaminated wound

may be understated and widely misunderstood. A 10-µg droplet of HD is enough to
cause vesication. The threshold for vapor/aerosol to induce cutaneous damage is 200 to
2000 mg-min/m3 (Ct), dependent on the anatomical location, environmental conditions
(temperature and humidity), sweating, and other factors.59 For ocular damage, the Ct is 12
to 70 mg-min/m3 under field conditions. The estimated Ct for airway injury is 100 to 500
mg-min/m3. The toxicology, clinical manifestations, pathogenesis of injury, and long-term
effects of HD have been previously summarized.59−61 In this experiment, vesicating levels
of HD could be extracted from the excised tissue. The average amount of HD (95% con-
fidence interval) extracted from all excised tissues was 9.9 mg (6.2 mg, 13.7 mg). This is
1000 times the amount necessary to induce vesication (with a 10-µg topically applied
droplet, about 80% of this evaporates from the skin surface, 10% enters the circulation,
leaving about 1 µg to produce vesication59). Any tissue handled or removed during damage
control surgery thus poses a hazard to medical personnel. The duration of this hazard is un-
clear. For HD-contaminated tissue, decontamination could be accomplished by first cutting
the excised tissue into small pieces to increase contact surface area and then submerging
the pieces for extended soaking in household bleach (5% hypochlorite) that is periodi-
cally refreshed and agitated. If nondestructive tissue handling is required, as in follow-on
histopathological examination for forensics or attribution, no proven alternatives to bleach
have been demonstrated and further study in this area is needed. All tissue samples harvested
from presumptively contaminated wounds should be carefully handled and considered po-
tentially hazardous. Although it is clear that HD was absorbed in the wound cavities, some
of which was extractable with an organic solvent, it is unknown where this agent was resid-
ing within the tissue. The use of radiolabeled agent and microautoradiography or confocal
Raman spectroscopy may be useful in pinpointing the exact location of agent contamination
in open wounds. It is unclear how long unreacted agent will reside in open wounds. Ex vivo
studies to examine the existence, kinetics, and time course of a reservoir of unreacted HD
in pig and human skin are nearing completion and results will be reported soon.

The Textbook of Military Medicine46 and the 2004 edition of Emergency War Surgery
state that there is no vapor release from contaminated wounds without foreign bodies and
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off-gassing from a wound during surgical exploration will be negligible or zero. This was
not found to be the case in this study. Before this study, wound healing studies using wean-
ling swine have demonstrated that following topical exposure to undiluted liquid HD for
120 minutes, there was a significant period of off-gassing of unbound agent, as measured
by a Minicams

TM
(Graham et al, unpublished results). Although the textbook states that

a chemical protective mask is not required for surgical personnel, the data from this and
preceding studies indicate a present risk, and appropriate personal protection should be uti-
lized, especially in a battlefield arena where CWA use has been detected or suspected. In this
study, a significant amount of HD was extracted from the wound swabs taken immediately
before surgery (60% of the applied dose, on average). The majority of the applied agent
remained in the biopsy cavities and was not immediately absorbed by the subcutaneous
fat or walls of the open wound as anticipated. Although approximately 1% of the applied
dose was extractable from the excised tissue, it is unclear how much of the unaccounted for
remaining agent had evaporated before swabbing, became fixed to tissue components, or
was absorbed systemically. Because of the low volatility of HD and the limited surface area
on which the applied HD was exposed to air, the amount of applied HD lost to evaporation
was likely very small. This small amount of HD vapor was detected above the surgical field
for each of the 4 tools. In general, there was no difference in the amount of HD detected
among the tools used. The amounts of HD vapor were, on average, 29 times higher than
the Department of Army’s worker population limit 8-hour TWA of 0.0004 mg/m3 and 4
times higher than the 15-minute short-term exposure limit of 0.003 mg/m3. Taking into
account the threshold limits for exposure noted above if a surgical staff works unprotected
for many hours to treat multiple patients with contaminated wounds in a relatively small
enclosed area such as Chemically and Biologically Protected Shelter Systems,7,12 their risk
of ocular or airway damage from the vapors may be significant. Absent verifiable decon-
tamination, appropriate protective measures should be taken, which should include use of a
chemical-biological mask and smoke evacuator such as those used during laser debridement
or resurfacing procedures. Guidance on the use of personal protective gear including masks
and chemical protective gloves can be found in the Textbook of Military Medicine.46,54

Dexterity while wearing loose-fitting chemical protective gloves can be greatly enhanced
by wearing an overlying pair of appropriately sized surgical gloves.

This risk has particular relevance in today’s casualty management system: injured
warfighters currently stationed in Iraq are evacuated to medical care at a CSH on average
30 to 60 minutes from the time of injury.9,11 Surgical critical care by the forward surgery
teams or at a CSH begins within 1 to 4 hours after injury following transport by ground or
air evacuation.12 During this time frame, any CWAs contaminating the wound, especially
HD, may not have been completely absorbed into the wound or completed their off-gassing
phase, thus posing a threat to attending caregivers. In addition, agent that has been absorbed
may not have completely reacted with tissue components or been degraded and may pose
an additional threat to both the patient and those handling the tissue.

An attempt was made with this study to point a way forward for surgical decontam-
ination by agents with latent or delayed effects, but why is this needed, from a military
perspective? Sustainment of warfighting capability in the face of chemical, biological,
radiological, and nuclear weapon employment is a vital command concern. Employing spe-
cialized expertise to fight within this environment is a ready solution but has profound
limitations. Containment of chemical, biological, radiological, and nuclear agent effects is
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another readily available remedy. Early elimination of contaminated tissue “contains” the
hazard, thus possibly expediting movement and improving casualty survival or loss of func-
tion; these casualties can then flow into the matured care and movement system that serves
casualties suffering conventional combat injuries. Advances in regenerative medicine and
prosthetics may mitigate effects of early surgical measures to resuscitate, control damage,
and decontaminate. Further research into the use of an effective decontaminant that is non-
toxic to tissue and can be used in open wounds and further experimentation with tools
such as the Versajet

TM
and Fugo Blade©R for effective removal of CWA contaminants from

wounds as well as debridement are warranted. These data provide insight for future studies
to determine the best treatment of combined traumatic and CWA injuries for the warfighter
and civilian injured during acts of war or terrorism.
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